Pick's Theorem: Is it a fair representation of Lattice Polygons? William Biersack
 MTH 4040: Coordinating Seminar

Definition: A lattice polygon is a polygon where the vertices are elements of Z^{d} for some $d \geq 2$

Practice creating lattice polygons!

Definition: Pick's Theorem
Given that A is the area of a closed lattice polygon, b is the number of lattice points on the polygon edges, and i is the number of points in the interior, then

$$
\begin{aligned}
& A=\mathbf{i}+\mathbf{1} / \mathbf{2} \boldsymbol{b}-\mathbf{1} \\
& b=\square \\
& A=\square \\
& A= \\
& \\
& A=1 / 2(\ldots)-1
\end{aligned}
$$

Is this answer correct? How can we check it?

Let's try again! This time with a different polygon!

$$
A=i+1 / 2 b-1
$$

$$
b=
$$

\qquad

$$
A=\ldots+1 / 2(\square)-1
$$

$$
A=
$$

Check...

